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SOME CONTACT PROBLEMS IN STEADY-STATE NONLINEAR CREEP IN 

CASES WITH THIN COVERINGS 

V. M. Aleksandrov and E. V. Kovalenko UDC 539. 376 

I. We shall first give some fundamental relations in the nonlinear theory of creep for 
the case of plane deformation which are necessary for the rest of our discussion [l]: 

c9(~ x O.~x.. ~ _ aV, xy Oay 
o--7 + -g~-~ - ~  o~ +-g-F = ~  (1.1)  

0%; o2~,~ o%~ + ~ 2 -~-~--~-y, 
ay~ 0x ~ 

e~ = A(r~ -1  I(t - -  v)  cr~ - -  v(~yl, e~ = A ( ~ - '  [ ( i  - -  v) % - -  v (~ ] ,  

where A is the creep modulus and v is the Poisson coefficient. 

Now we consider the solutions of some problems in the equilibrium of a thin layer t 
(gx I < oo, 0~y~h), whose physical and mechanical properties can be described by the system 
of equations (I.1). Suppose that the boundary conditions on the faces of the layer have the 
form 

�9 ~ y = O  ( y = O ,  y = h ) ,  % = - - p * ( x ,  t) ( y = h ) ,  ( 1 . 2 )  

p *  (x ,  t) = p (x ,  t) (~]x[~<a), p * = 0  ([ 'x[>a) ,  v'=B(r~ (y----0). 

Here t is time; v is displacement along the y axis; B is some linear operator whose form will 
be indicated below, or 

x~y = 0 (y = h), oy = - - p * ( x ,  t) (y = h) ,  ( 1 . 3 )  

~" = o (y  = o) ,  v" = B ~  (y  = 0) ,  

u is displacement along the x axis. 

Taking account, furthermore, of the fact that the layer is thin, we see that instead of 
the condition of compatibility of the rates of deformation defined by the third formula in 
(I.1), we can take 

T~y ---- f~'!x) ~- Yf2(x}. (I .4) 

Then the approximate solutions of the boundary-value problems (1.I)-(1.4) can be written in 
the form [2, 3] 

�9 ~ = a~ = O, % = - - p * ( x ,  t), 

s~ = - -  A ( i  - -  ~) [ ( i  - -  ~ -4- v2) /3 ] ("-z ) /~  I~P* (x,  t)I m sgn  p*  (x ,  t); ( 1 . 5  ) 

~:~ = - -  ~, ( t  - -  v ) - ~ p  * (x, t), % = - -  p*:(x, t) ,  -~,~ = - -  ~ ( i  - -  v ) - ~ •  

X (h - -  y )  [p* (x ,  t)]' ,  e~ = - -  A 3  (1-m)/2 [(1 - -  2~)  (1 - -  v ) - l ]  m f P* (x ,  t) [= sgn p*  (x ,  t). ( 1 . 6 )  

"~A l a y e r  w i l l  be cons idered  th in  i f  the l eng th  2a of i t s  a c t i v e l y  loaded segment i s  small  in  
comparison with  the th ickness  h. 

Moscow. T rans l a t ed  from Zhurnai P r ik l adno i  Mekhaniki i Tekhnicheskoi F i z i k i ,  No. 2, pp. 
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Fig. I 

Using (1.5) and (1.6), we can satisfy the last boundary conditions of 
we will then have, respectively, for y = k and p*(x, t) ~0: 

v" = - - A h ( t  - -  v)[( t  - -  v + v2)/31 (~-~)/2 [p*(x,  t)l ~ - - B i p * ( x ,  t ) ] ;  

v" = - - A h 3  (~-m)i2 [(i - -  2v)(l - -  

2. Making use of the formulas of Sec. I, 
concerning frictionless indentation by a force 
force is equal to e with respect to the center 

( 1 . 2 )  and  ( 1 . 3 ) ;  

(I .7) 

v) - :  lm[p*(x, t) l '~ - - B  [p*(x, t ) ] ' .  ( ! .  8) 

we consider the following contact problem 
P(t) (the eccentricity of application of the 
of the line of contact Ixl ~a (Fig. I)) into 

the surface of a layer, lying on the hydraulic base (y~-~ 0), of a rigid die. Outside of the 
die the surface of the layer is free of load, and by virtue of the contact condition for y = 
h under the die 

v == - - [ 5 ( t )  -}- a( t )x  - - / ( x ) ]  ([x] ~ .  a),  ( 2 .  i )  

where 6(t) + a(t)x is its rigid displacement; f(x) is the shape of the die base. We shall 
also assume that during the process of quasistatic indentation of the die into the layer 
there is no break in the contact between its lower face and the liquid. 

Using relation (1.7) and assuming that in this relation B = (pg)-1, since for the hy- 
draulic base when y = 0, we have Oy = pgv (p is the density of the liquid, ~ is the accelera- 
tion of gravity), and also including in our calculation the fact that when ixr~ ~ the func- 
tion v is given by the relation (2.1) and p*(x, t) = p(x, t), we obtain an equation for 
determining the contact pressure p(x, t): 

h A C [ p ( x ,  t)] ~ + (pg)-~[p(x ,  t)]" = 5"(t) -/- a ' ( t ) x  (t > 0), ( 2 . 2 )  
( g g ) - ~ p ( z ,  o) = ~(0) ~-  ~(O)x -/(x) (t = 0),  

C = ( t  - -  v ) [ ( I  - -  v + vz) /3 ]C~- l ) /~ .  

To Eq. (2.2) we should also adjoin the condition for equilibrium of the die: 

P ( t ) =  . i P ( x ' t )  dx'  P ( t ) e =  .i x p ( x , t ) d x .  
- - a  --Ct 

In dimensionless variables, taking account of the notation 

(2.3) 

xa -1 = x ' ,  ea -1  = e',  s = ha -1,  t to  1 = t ' ,  D = to~,AC (apg) ~, 

a(t)~ -~  = v(t ' ) ,  ~ (x ' ,  t') = p(x, t ) ( a p g ) - ~ ,  N ( t ' )  = P(t)(~pg)-~ 

(to is the time scale, and the primes in x' and y' will be omitted from here on), formulas 
(2.2) and (2.3) take the form 

D [q~ (x, t)] m -}- r (x, t) ---- ?" (t) + a" (t) x, qJ (x, O) = ? (0) '~, ~ (0) x 

I t~ (2.4) 
- -  ] (x), IV (t) = ~ (p (x,  t) dx~ N (t) e = J" xcp (x, t) dx.  

- - 1  - - 1  

From this point on, we shall consider, without loss of generality, the case of a plane 
die (a(t) = e ~ O) and assume that in a neighborhood of t = 0 we are given an expansion for 
the force 

N( t )  = No + N i t  %- ... + N , t  '~ _.L O ( t , ~ ) .  ( 2 . 5 )  

~ .7.'4 
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From system (2.4) we must determine the functions r t) and y(t). We shall seek them 

in the form 

~0(x, t) = q%[i -5 q)lt "~ ... -5 q)nt n -50( tn+l)] ,  ~0 = .?(0), ( 2 . 6 )  

?(t) ---- 8 -5 ?i t  -5 ?~t ~ -5 ... -5 ?nt n n u O(tn+~), 6 = ?(0). 

S u b s t i t u t i n g  ( 2 . 5 ) a n d  ( 2 . 6 )  i n t o  Eqs .  ( 2 . 4 )  and  e q u a t i n g  i n  t he  r e s u l t i n g  f o r m u l a s  t h e  
t e rms  on t h e  l e f t  and r i g h t  s i d e s  w i t h  e q u a l  powers  o f  t ,  we o b t a i n  

t ~o~N~ ( n = l ,  2, .), ( 2 . 7 )  ~0 = y No, ~ = -~ " " 

t m 
71 = D ~  -5 ~01, ?~ = 7 Dm~o ~1-5  q)~ . . . .  

Thus ,  f o r m u l a s  ( 2 . 6 )  and ( 2 . 7 )  d e f i n e  t h e  a s y m p t o t i c  b e h a v i o r  o f  t he  s o l u t i o n  o f  the  p r o b l e m  
f o r  s m a l l  v a l u e s  o f  t i m e .  

Now s u p p o s e  t h a t  we a r e  g i v e n  t h e  e x p a n s i o n  f o r  i n d e n t i n g  t he  f o r c e  i n  a n e i g h b o r h o o d  o f  
t = co: 

N(t)  = No -5 Nle  -Dr -5 -5 Nne-Dnt -5 0(e-D(n+l)t). ( 2 . 8 )  

We s h a l l  s e e k  t h e  f u n c t i o n s  ~ , (x ,  t )  and y ( t )  s a t i s f y i n g  t h e  s y s t e m  o f  e q u a t i o n s  ( 2 . 4 )  i n  
t h e  f o r m  

~(x, t) = ~[i + ~le -Dr -5 ... + (p~e -D~t -50(e-D(n+~)t)], (2.9) 

~(t) = ~ t  + ~0 + ~e-Dt  + ... + ~ e - D ~  + O(e-~(~+~)~)]. 

o o  

Here we can approximately consider?0-----~N0+~(+N~--~j ) . In addition, a more exact 

algorithm for determining Yo will be described in Sec. 4. 

Substituting (2.8) and (2.9) into (2.4) and equating the coefficients of equal powers of 
e -Dt on the right and left sides, we obtain 

~ = ( i /2)N0,  ~n = (i/2) ~7o~N~ (n = i , 2 , . . - . ) ,  ( 2 . 1 0 )  

= = - -  = - -  ( t / 2 )  . . . .  

F o r m u l a s  ( 2 . 9 ) . a n d  ( 2 . 1 0 )  d e f i n e  t h e  a s y m p t o t i c  b e h a v i o r  o f  t h e  s o l u t i o n  o f  t he  above  p r o b l e m  
f o r  l a r g e  v a l u e s  o f  t i m e .  I t  s h o u l d  be  n o t e d  t h a t  when N = c o n s t ,  i t  f o l l o w s  t h a t  q0 = ( 1 / 2 ) N ,  

= ( l / 2 ) N  + D ( ( l / 2 ) N ) m t .  

3. We c o n s i d e r  t h e  c a s e  i n  w h i c h  a l a y e r  whose r h e o l o g i c a l  p r o p e r t i e s  a r e  d e s c r i b e d  by 
Eqs .  ( 1 . 1 )  l i e s  on a r o d  b a s e ( - - /  ~ g ~ 0 )  , w h i c h  i n  t u r n  i s  s u p p o r t e d  by a r i g i d  b a s e .  I n  
o t h e r  r e s p e c t s  t he  f o r m u l a t i o n  o f  t he  p r o b l e m  g i v e n  i n  S e c .  2 r e m a i n s  u n c h a n g e d .  

The r o d  b a s e  f o r  t he  c a s e  o f  p l a n e  d e f o r m a t i o n  i s  d e s c r i b e d  by the  e q u a t i o n  

u = O, v = v(g), ex = 0, e~ = R~, ?x~ = 0, (3. I) 

R = (i - -  2~)[2q(i - -  p,)]-~, c~ = ~(t - -  p,)-~c:~, ~xu = O, v"  = 0 ,  

where q is the shear modulus and ~ is the Poisson coefficient of the rod material. 
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From formulas (3.1) we find that when y = 0, 

v = Rlay. (3.2) 

If we now substitute into relation (1.8) when IxJ~ a the functions p*(x, t) = p(x, t) 
and v" in the form (2.1) and set B = Rl in it, according to (3.2), we obtain the following 
equation for determining the contact pressure p(x, t): 

hAC[p(x, t)] m + Rlp'(x, t) = 5"(0 § a'(t)x (t > 0), (3 .3)  

rap(x, o) = t~(o) + a(O)x - ](x) ( t  = 0 ) ,  c = 3 c l - m , / 2 [ ( 1  _ 2 v )  ( i  - ~ ) - 1 ) . ~ .  

To Eqs.  (3 .3 )  we must a d j o i n  the  s t a t i c s  c o n d i t i o n s  ( 2 . 3 ) .  

Asymptotic solutions for the system of equations (3.3), (2.3) for small and large values 
of time can be obtained according to the scheme described in Sec. 2. 

Now we consider the case in which a thin layer lies on a two-layer base. This is (Fig. 
2) an elastic layer (--H-- l~y~--l) lying on a rigid base and covered with a rod layer 
(--l~y40). In other respects the formulation of the problems described at the beginning 
of Sec. 2 is retained. 

For an elastic layer in the case when it undergoes plane deformation# with y = --7, we 
have [4] 

v = - - ~  %ly-lK d~ 0---- 3 - -  4~ ]' ( 3 . 4 )  
- - o o  

oo  

0 

where G i s  the  s h e a r  modulus and o i s  the  P o i s s o n  c o e f f i c i e n t  o f  the e l a s t i c  l a y e r .  

I t  i s  known t h a t :  1) the f u n c t i o n  L(~) i s  c o n t i n u o u s ,  r e a l ,  and even on the  r e a l  a x i s ;  

2) L ( ~ ) > 0  ( [ ~ J < c o ) ;  
(3.5) 

3) L (~) ~ -= AI~ § O (~3) (~..+ 0), L (~) ~ = I § 0 ~e -A2t) (~--~ co). 

Taking account of the fact that Oy remains constant across the thickness of the rod 
layer and making use of formula (3.1), we find for y = 0 that 

v = Rlcx u + ~ a~K d~. (3.6)  

As b e f o r e ,  we s u b s t i t u t e  i n t o  the  r e l a t i o n  ( 1 . 8 )  when Jx[ ~ a the  f u n c t i o n s  p*(x ,  t)  = 
p ( x ,  t )  and v" i n  the  form (2 .1 )  and,  a c c o r d i n g  to ( 3 . 6 ) ,  s e t t i n g  

B(. . . )= RI(...)§162 (.. .)K d~, 

in that relation, we obtain an integral equation for determining the unknown contact pressure 
p(x, t) under the die: 

hAClp(x,t)lm+Rlp'(x,t)§ p'(~,t)K d~ 5"(t)+cz'(t)x (Ix[~a,t>O, (3 .7)  
- - a  

Rlp(x,O) +~-6- p(~,O)K d~ = 6 ( O ) + ~ ( O ) x - / ( x )  ( ]x l<~a, t=O) .  

The c o n s t a n t  C in  (3 .7 )  has the form ( 3 . 3 ) .  To Eqs.  (3 .7 )  we must a d j o i n  the  e q u i l i b r i u m  
c o n d i t i o n s  ( 2 . 3 ) .  

Making Eqs.  (3 .7)  and (2 .3 )  d i m e n s i o n l e s s  and i n t r o d u c i n g  the  n o t a t i o n  o f  Sec .  2, i n  
which we need on ly  r e p l a c e  pg wi th  (R~) -~ ,  we have 

'#In (3.4) we have taken account of the fact that u = 0 on the upper face of the layer. 
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1 

D [~0 (x, t)] m 4- ~" (x, t) 4- -~ ~p" (~, t) K d~ =y" (t) 4- a" (t) x (t > 0), 
- - 1  

1 

(z, o) = : ~ (~, o) K d~ = ~ (0) + ~ (0) x - - i  (z) (t  = 0), 
- -1  

[ x I ~ i ,  • = a (ORl ) ' l ,  A = Ha-* ,  
1 1 

N (t) ---- ~ W (x, t) dx, N ( t )  e = ~ xep ( x ,  t) dx. 
- - 1  - - 1  

(3.8) 

4. Before proceeding to solve the system of equations (3.8), we note that by virtue of 
the relations (3.5) and the results of [5], we can state the following: 

I. The operator 

I 

M~o= u-- ~ ~;,, s (~J) K ( W )  ~j (4.1)  
- -1  

is a self-adjoint operator which is completely continuous and positive-definite and acts from 
L=(--], l) into L2(--I, I). 

2. If the function f(x) ~ L2(--l, I), then the solution of the second equation in (3.8) 
in the space L2(--l, l) exists and is unique for any values of the parameters x, A~(0, co). 

3. The eigenvalues qn of operator (4.1) are real and positive, and NI~D~I]2>~...D~I]n~ 
�9 .-, qn ~ n-: In n (n § =). 

We construct the asymptotic solution of the system of equations (3.8) for small values 
of time subject to the condition that for N(t) in a neighborhood of t = 0 we have the expan- 
sion (2.5). From this point on we may, without loss of generality, consider the case of a 
plane die (~ = e = 0). We represent y(t) in the form (2.6), and we shall seek (P(x, t) in 
the form 

(p(x, t) = %(x) + %(x) t +.. .  + (p,,(x)t ~ + O(t~+:), (4 .2 )  

where s ---- s 0) and i s  d e t e r m i n e d  from the  s econd  e q u a t i o n  in  ( 3 . 8 ) .  

S u b s t i t u t i n g  ( 2 . 5 ) ,  ( 2 . 6 ) ,  and (4 .2 )  i n t o  Eqs.  ( 3 . 8 )  and e q u a t i n g  terms on the  l e f t  and 
r i g h t  s i d e s  t h a t  have equa l  powers o f  t ,  we o b t a i n  

1 

j epn(x) dx = N,~ (n = 0~1,2 . . . .  ), (4 .3)  
- - 1  

1 

- - 1  

1 

~ (x) + -~ ~ (~) K - -  .~ Din% (x) ~: (x) (I x I ~ i) . . . .  
- -1  

The integral equations of the second kind in (4.3), by virtue of the properties of oper- 
ator (4.1), are Fredholm equations [6] and, when taken together with the second equation in 
(3.8), serve to determine~n(x)(n = 0, ], 2, ...) on the assumption that the Yn are given. 
The latter can then be determined from the integral relations (4,3). Approximate solutions 
of the integral equations can be found, for example, by the method of [5]. 

Now we construct the asymptotic solution of the system of equations (3.8) for large 
values of time, subject to the condition that for N(t) in a neighborhood of t = ~ we have 
the expansion (2.8). As before, we consider as an example the case of a plane die (e = e = 
0). We represent Y(t) in the form (2.9), and we shall seek ~(x, t) in the form* 

~(x, t) = ~=[ i  4- ~:(~e -9~ -6 ... 4- ~n(~e -Dnt 4-0(e-D(n+l)9]. (4 .4 )  

~This structure of the solution is based on a report by V. M. Aleksandrov and E. V. Kova- 
lenko: "Contact problems in the theory of elasticity in the case of nonlinear wear," in: 
Contact Rigidity in Instrument-Making and Machine Construction [in Russian], Riga Polytechnic 
Institute, Riga (1979). 
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Substituting (2.8), (2.9), and (4.4) into the system of equations (3.8) and equating in 
t h e  r e l a t i o n s  s o  o b t a i n e d  t h e  c o e f f i c i e n t s  o f  e q u a l  p o w e r s  o f  e - D t  on t h e  l e f t  and  r i g h t  
sides, we find 

{P~ = T N0' {~  J ~'~ (x) d z  = N n  ( n = l ,  2, . . . ) ,  Dq)~ = y: ,  
-: (4.5) 

O - , P ~  ) { p ~ ( x ) + :  + : ( D K  d;=t~{p72 (Ixl~<a); 
--1 

1 

i - - -  i ~ ,  - . -  
--1 

The Fredhe!m integral equations of the second kind in (4.5) serve to determine the (pn(X) 
(n = ], 2, ...) on the assumption that the ~n are given. The latter can then be determined 
from the integral relations in (4.5). Approximate solutions of the integral equations (4.5) 
can be found, as noted earlier, by the method of [5]. 

Now we shall assume that there exists a value t = T such that "r T)= ~_(x, T), where 
(Pi(x, t) are the contact stresses obtained for large and small values of time, respectively, 
by formulas (4.2) and (4.4). Then we also have y+(T) = 7_(T), from which we can determine 

the constant Yo in (2.9). 

It should be no:ed that in a number of cases it is sometimes more useful to work with 
another algorithm for constructing the solution of the system (3.8) for large values of time. 
We shall describe this algorithm for the case N = const. 

We represent 7(t) in the form 

~o 

? ( t ) = ~ l : t - -  To-]- Z e-tht--] - ~ ~ ~n e-(57:§ - . . .  ( 4 . 6 )  
h=l h=l Z=l 

The specification of Y(t) in the form (4.6) is justified by physical considerations and is 
based on the above-mentioned report by the authors. 

We shall seek a solution of the integral equation (3.8) in the form 

q~(z, t) = (p~{l + m:(z, t) + . . .  + + d x ,  t) + o[q~,d~, t)]}.  (4.7) 

Now, using an analog of Newton's method [6], we obtain 

D~ = ?~; (4.8) 

1 oo 

~m+~ (~ (x, t) + {p: (x, t) + : -  ~ (;,  t) K d~ = 
--I h=l 

~n{p~ ,p.~ (x, t) + {v; (x, t) + +; (z, t) + 

1 

-~K q,o" (~, t) K d$==- --(p21 ~n  (8~ 2_ 5n) e -(6~+~n)t (I x [~-~i), 
--1 ~=I n=l 

We represent the solutions of the integral equations (4,9) in the form 

q3: (x, t) ~ sh (x) e -Sat, tP2 (x, t) ~'~ ~ s~n (x) o " , , . .  
h = l  h = l  n = l  

(4.1o) 

Then, after some obvious transformations, we can write 

1 

sn (~) K d~ = ansn (x) -1-, {P;: (I x l <~ t)~ 
- - I  

1 

i - - i  [ ;  -- sA ~: "~ - "~ (t + o~)  st (x) s~ (x) + q:,~ ~ (I zt % 1) . . . .  

-1 Dm{p~ -j" --  6~ ako:r~- I 

~ --  ~n , ~t~n -- Z 4- ~h'Y'n 

( 4 . I 1 )  
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Fig. 3 

It should be noted that by virtue of the above-mentioned properties of the operator M, 
Eqs. (4.11), for almost all ~k(k ~I) and A~(O, ~), will be uniquely solvable in L~(--I, I). 
Fur the rmo re, 

~i ~ ~ ~ e-(~+~ N = q~ (x,  l) dx ~-- N o -~- ~--a Nn e-sn~ -[- ]Vhn ' + . . . .  ( 4 . 1  2)  
--I n~--I k=l n=l 

I 1 

No = 2q)oo, N,, = ~ J" s~ (x) dx = O, 7V~ = ,p .  j' s ~  (x) dx . . . .  
--1 --1 

We shall seek the solutions of Eq$. 
normal system of Legendre polynomials: 

�9 ~ / ~ , I  $ i  ,~ . . 
s~ (x) = Y:7 ~:o ~ , ~ P ~  (z), p~ (~) = ~ - 7 -  ~',, t ~ ,  

~ 0  

oo 

s~,~ (x)  = 2 ~ g  ~ ~ ~ r ~ *  ~ .  ~j (x). 
~=0 

(4.11) in the form of Fourier series in an ortho- 

(4. I 3) 

If we also take into account the equations 

22 
i--o j=o 

h n n *  sh (x) s~(x) = rj r~j (x) 

(4.1 4) 

(the form of the coefficients eij(A) r~ n is given in [5]) substitute (4.13) and (4.14) into 

(4.11), use the condition of orthogonality of the Legendre polynomials, and equate in the re- 
sulting relations the coefficients of the right and left sides for polynomials with the same 
number, we obtain 

-~. e i j ( A ) a j - - a h a i = = 5 ~  o ( i = = 0 , 1  . . . .  ); 
~ = 0  

(4. ~5) 

3 = 0  

q = o , t , 2  . . . .  ), 

(4.16) 

where 6ij is the Kronecker delta. 

It should be noted that, by (4.12) and (4.13), a~ = 0, b~ n = 0 (k, n ~I). These condi- 
tions serve to determine the unknown quantities ~n, ~kn- To see this, we observe that from 
(4.15) we have ~ = AIA -I, where A is the fundamental determinant of the system (4.15) and &1 
is an auxiliary determinant obtained from A by replacing its first column with tile elements 
(i, 0, 0, ..., 0, ..,}. The determinant A~ is symmetric, and therefore its roots ~j (j = I, 
2, ...) are real. Furthermore, taking into account the results of [7], we can assert that 
r12j~2 < aj < ~aj, where Nj are the eigenvalues of the integral operator (h.]). This provides 
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the justification for the structure of the solution (4.6), (4.7) of the integral equation 

(3.8). 

Now we shall show that the condition bo kn = 0 serves to determine uniquely the value of 
Ckn in (4.6). From the system (4.16) it follows that b kn = A3A~ I, where A= = det [• - 
~kn~ij] and A3 is an auxiliary determinant of the system (4.16) obtained from the fundamental 

determinant Aa by replacing the first column with the elements (m- ])2-I(| + ~kn) { rkn + 
/2Ckn(m- ])-l(l + ~kn) -I, r]~ n, r kn ..... r kn, ...}. Obviously in order to select ~kn uni- 

quely from the condition b kn = 0 we must have a determinant A4 = det [~v-leij(A) -- ~kn6ij] 

(i, j ~ I) which is different from zero. It is not difficult to see that A4 has the same 
structure as g~, in which instead of the elements ~-leij(A) --~k~ij we have • -- 

k 
~kn~ij. Assume that A4 = 0: then from the condition a o = 0 it follows that ~kn = an, and 

hence a n =-3 (n >i I). But this is impossible, since a n > 0 (n ~ I). Consequently h~ ~= 0, 
and the condition b kn = 0 serves to guarantee a unique choice of ~kn in (4.6). 

Having determined the numbers an, Ckn in this manner, we next find the values of aj, 
kn 

bj from the inhomogeneous systems (4.15), (4.16) and construct the functions Sn(X) , Skn(X). 

It should be noted that these systems, by virtue of the properties of the operator M and 
Hilbert's theorem [6], are uniquely solvable in the space of square summable sequences 72 
for any values of the parameter A~(0, ~), and the method of reduction can be used for solv- 
ing them. 

The constant Yo in (4.6) is determined, as above, from the condition y+(T) = y_(T). 

5. We give a numerical illustration of the proposed algorithms by using the example of 
the second problem in Sec. 3. Suppose that the lower elastic layer is rigidly fixed to the 
base [4] 

211  sh 2u - -  4u 
L (u )  = u (2q ch  2u + t + ~l 2 + 4u") .~, ~3 : 3 - -  4cr~ ( 5 . 1 )  

and the force impressing the die is constant with respect to time, N = I. Then in the expan- 
sions (4.3) and (4.5), respectively, we have 

No = t ,  qg~ = 1/2, N~  = 0  

(n = 1, 2 . . . .  ). 

In (3.8) and (5.1) we set D = I, • = ~, A = I, ~ = 0.3. 

In the asymptotic expansions for ~(x, t), (4.2) and (4.7)~ we retain only the first two 
terms. The law of distribution of the contact normal stresses ~(x, t) as a function of x 
and t is shown in Fig. 3 (m = 1.5, with curves I-4 corresponding to t = 0, 3, 9, and ~) and 
Fig. 4 (m = 2, with curves I-5 corresponding to t = 0, I, 2, I0, and ~). It should be noted 
that the asymptotic expansion (4.2) for~ (x, t) constructed for sufficiently small values of 
time coincides with the corresponding asymptotic expansion (4.7) constructed for sufficiently 
large values of t when T ~ 8 in the case m = 1.5 and when T ~ 8.5 in the case m = 2. Further- 
more, a numerical analysis of the problem showed that for m = 1.5 and m = 2 and equal values 
of x and t, the values of ~ (x, t) differ from each other by no more than 5-6%. 

To determine the constant Yo in formula (4.6) we use, as noted above, the condition 
y+(T) = y_(T). We shall have for m = 1.5 and m = 2, respectively, the values Yo = 1.483 and 
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To = 1.577. Figure 5 shows the law of distribution of T(t) as a function of t when m = 1.5 
and 2 (curves ] and 2, respectively). It should be noted that this function is almost linear. 
In addition, the set under the die will be larger for lower nonlinearity indexes m if other 
conditions are equal. 
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NUMERICAL ASYMPTOTIC SOLUTION OF STRENGTH AND VIBRATIONS 

PROBLEMS OF THIN SHELLS OF REVOLUTION 

S. V. Stepanenko UDC 539.3 

For thin shells of revolution whose middle surface has a nonnegative Gaussian curvature, 
a numerical analytical approximate solution is constructed for the class of linear boundary- 
value problems allowing of separation of variables. 

It is known that the solution of each such problem decomposes into a slowly varying part 
and a solution of edge effect type. On this basis, a method of construction the approximate 
solution of the problem is proposed in [I, 2], where it is proposed to seek the slowly vary- 
ing part of the solution by a numerical method, and the edge effects by an asymptotic method. 
On the basis of this method~ an algorithm is constructed in this paper, which can be applied 
to a broader class of problems as compared to [I] because of utilization of the method of 
elimination in the boundary conditions [3]. As an illustration of the method, solutions are 
presented for a number of strength and vibrations problems for shells of different geometries. 

I. Many strength and vibration problems for elastic shells of revolution reduce to 
seeking solutions of a particular kind 

u ~  = = e x p  (Joint -b inx2) US n (x~), ( 1.1 ) 
wren = e x p  (Joint ~ ~nx2)W mn (xl). 

Here t is the time; xl, x2, orthogonal coordinates of the shell middle surface; i = r ~m, 
real integers; and m and n, integers, the subscript ~ takes on the values ] and 2; ul, uu, w, 
displacements in the xl, xu directions and along the external normal. The well-developed 
apparatus of shallow shell theory [4] can be applied to describe solutions of the form (I.I) 
with n~4. In the absence of tangential components of the surface forces, a force function 
~(xl, x2, t) is introduced. By virtue of (1.1) we will have 

~mn (zl,  x2,t) = exp ( i~mt ~- inx2)r  ~ (xl). ( 1 . 2 )  

The system of governing equations of shallow shell theory after making the system operators 
dimensionless and substituting functions from (I.I)and (1.2) becomes 
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